From 1 - 6 / 6
  • A raster ArcGIS grid that defines the elevation of the top surface of the Ōtāhuhu Member (Takaanini Formation) geological unit. It has been derived from the 3D geological model of the Pukekohe area which forms part of GNS Geological Map 12. The 3D model was built using Leapfrog Geo software. This dataset forms part of Jones KE, Strogen DP, Hill MP. 2022. 3D geological model of the Pukekohe area [digital data]. Lower Hutt (NZ): GNS Science. (GNS Science geological map; 12a). https://doi.org/10.21420/PDRP-WS09. The explanatory text associated with this dataset is available from https://doi.org/10.21420/T65Q-MX18.

  • A raster ArcGIS grid that defines the elevation of the basal surface of the Ōtāhuhu Member (Takaanini Formation) geological unit. The layer has been derived from the 3D geological model of the Pukekohe area which forms part of GNS Geological Map 12. The 3D model was built using Leapfrog Geo software. This dataset forms part of Jones KE, Strogen DP, Hill MP. 2022. 3D geological model of the Pukekohe area [digital data]. Lower Hutt (NZ): GNS Science. (GNS Science geological map; 12a). https://doi.org/10.21420/PDRP-WS09. The explanatory text associated with this dataset is available from https://doi.org/10.21420/T65Q-MX18.

  • A Gocad T-surf mesh that defines the volume of the Ōtāhuhu Member (Takaanini Formation) geological unit. It has been derived from the 3D geological model of the Pukekohe area which forms part of GNS Geological Map 12. The 3D model was built using Leapfrog Geo software. This dataset forms part of Jones KE, Strogen DP, Hill MP. 2022. 3D geological model of the Pukekohe area [digital data]. Lower Hutt (NZ): GNS Science. (GNS Science geological map; 12a). https://doi.org/10.21420/PDRP-WS09. The explanatory text associated with this dataset is available from https://doi.org/10.21420/T65Q-MX18.

  • A Gocad T-surf mesh that defines the elevation of the top surface of the Ōtāhuhu Member (Takaanini Formation) geological unit. It has been derived from the 3D geological model of the Pukekohe area which forms part of GNS Geological Map 12. The 3D model was built using Leapfrog Geo software. This dataset forms part of Jones KE, Strogen DP, Hill MP. 2022. 3D geological model of the Pukekohe area [digital data]. Lower Hutt (NZ): GNS Science. (GNS Science geological map; 12a). https://doi.org/10.21420/PDRP-WS09. The explanatory text associated with this dataset is available from https://doi.org/10.21420/T65Q-MX18.

  • A raster ArcGIS grid that defines the thickness of the Ōtāhuhu Member (Takaanini Formation) geological unit. It has been derived from the 3D geological model of the Pukekohe area which forms part of GNS Geological Map 12. The 3D model was built using Leapfrog Geo software. This dataset forms part of Jones KE, Strogen DP, Hill MP. 2022. 3D geological model of the Pukekohe area [digital data]. Lower Hutt (NZ): GNS Science. (GNS Science geological map; 12a). https://doi.org/10.21420/PDRP-WS09. The explanatory text associated with this dataset is available from https://doi.org/10.21420/T65Q-MX18.

  • A Gocad T-surf mesh that defines the elevation of the basal surface of the Ōtāhuhu Member (Takaanini Formation) geological unit. It has been derived from the 3D geological model of the Pukekohe area which forms part of GNS Geological Map 12. The 3D model was built using Leapfrog Geo software. This dataset forms part of Jones KE, Strogen DP, Hill MP. 2022. 3D geological model of the Pukekohe area [digital data]. Lower Hutt (NZ): GNS Science. (GNS Science geological map; 12a). https://doi.org/10.21420/PDRP-WS09. The explanatory text associated with this dataset is available from https://doi.org/10.21420/T65Q-MX18.